To the Editor: As U.K. medical students whose clinical placements were suspended in March 2020, the views expressed by Schuiteman and colleagues on the importance of bridging communication barriers particularly resonated with us.

COVID-19 lockdown measures brought a halt to in-person teaching and clinical placements for medical students across the United Kingdom. Summative examinations for the academic year at our medical school were also postponed and later moved to online proctoring systems. Having been suspended from placement and isolated—not only from medical school but from our peers, too—there was much concern surrounding online examinations. Bridging the communication gap between medical students and medical school administrators was key in easing increasing worry among students and to provide a more manageable workload for the university in a time of great uncertainty.

To this end, our medical school made use of an online forum to facilitate the dissemination of information to students; this included updates on changes to lockdown measures, examination updates, and directions to well-being services. To address this, the Student–Staff Liaison Committee (SSLC) was employed to gather and communicate the medical student opinion. SSLC representatives were able to share the views and concerns of students with the medical school, providing an effective and manageable means of communication.

The importance of a student representatives council has been previously discussed. Here, we demonstrate its importance in facilitating the communication of the medical student opinion in unprecedented times and its role in addressing student concerns. Like the authors, we agree that the value of an effective working relationship between the student government and medical school administration has been demonstrated during the COVID-19 pandemic, and we recommend the use of online forums and SSLC representatives in all future crises’ events involving medical schools.

Funding/Support: None reported.

Other disclosures: None reported.

Ethical approval: Reported as not applicable.

Elena Whiteman, MSc
Third-year medical student, Warwick Medical School, University of Warwick, Coventry, United Kingdom; elena.whiteman@warwick.ac.uk; ORCID: https://orcid.org/0000-0003-2451-1967.

Sallu Dawo
Third-year medical student, Warwick Medical School, University of Warwick, Coventry, United Kingdom; ORCID: https://orcid.org/0000-0002-1208-4104.

First published online June 8, 2021

References

Medical Student Government Breaks COVID-19 Communication Barrier Between U.K. Students and Administrators

The COVID-19 Pandemic Is an Opportunity to Enhance Research on Remote Digital Anatomy Teaching Platforms

To the Editor: It was our pleasure to read Pearson’s comments, which raise important issues about the restriction of cadaver-based anatomy education due to the COVID-19 pandemic. We agree that disruption of cadaveric dissection could be accompanied by negative consequences because it has proven valuable for medical students regarding acquisition of anatomical knowledge. We also agree that this method could lead to development of compassion and empathy because medical students can encounter death and consider the cadaver as their first patient. Pearson implies that future patients’ care by physicians could be compromised if cadaveric dissection diminishes. However, despite the aforementioned value of cadaveric dissection, we note that, to the best of our knowledge, there is lack of evidence that patients’ care declines if physicians have not received cadaver-based education.

We believe that recent findings of anatomy education research, concerning 3-dimensional (3D) digital visualization technologies, should be taken into account. Until recently, cadaveric dissection had not been found inferior to any digital anatomy teaching method. Nevertheless, Ruthberg and colleagues have recently demonstrated that the examination performances of a group of students taught anatomy via a 3D visualization technology (mixed reality) did not significantly differ from those of a group of students taught anatomy via dissection. Moreover, mixed reality was found to be more time-efficient than dissection. Zibis and colleagues compared the performances of 4 groups of students, each of which were taught anatomy via 4 different methods: a 3D digital platform, plastic models, cadaveric dissection, and prosection, respectively. The participants in each of the 4 groups were asked to identify anatomical structures in projected images. The students who received teaching via the 3D digital platform performed significantly better than did those who learned anatomy with the remaining 3 methods.

Thus, although cadaveric dissection has a high educational value, this method should not be considered as definitely superior to digital technologies in terms of knowledge gain. It seems that, due to the COVID-19 pandemic and the shift to remote digital anatomy teaching platforms, a remarkable opportunity arises for enhancement of research concerning these platforms. Continuously evolving 3D digital visualization technologies have shown remarkable potential to enable acquisition of anatomical knowledge. This knowledge could be the basis for high-quality care to future patients.

Funding/Support: None reported.

Lucy C. Chapman
Third-year medical student, University of Warwick Faculty of Medicine, University of Warwick Medical School, Coventry, United Kingdom.

First published online June 8, 2021

References

The COVID-19 Pandemic Is an Opportunity to Enhance Research on Remote Digital Anatomy Teaching Platforms

To the Editor: It was our pleasure to read Pearson’s comments, which raise important issues about the restriction of cadaver-based anatomy education due to the COVID-19 pandemic. We agree that disruption of cadaveric dissection could be accompanied by negative consequences because it has proven valuable for medical students regarding acquisition of anatomical knowledge. We also agree that this method could lead to development of compassion and empathy because medical students can encounter death and consider the cadaver as their first patient. Pearson implies that future patients’ care by physicians could be compromised if cadaveric dissection diminishes. However, despite the aforementioned value of cadaveric dissection, we note that, to the best of our knowledge, there is lack of evidence that patients’ care declines if physicians have not received cadaver-based education.

We believe that recent findings of anatomy education research, concerning 3-dimensional (3D) digital visualization technologies, should be taken into account. Until recently, cadaveric dissection had not been found inferior to any digital anatomy teaching method. Nevertheless, Ruthberg and colleagues have recently demonstrated that the examination performances of a group of students taught anatomy via a 3D visualization technology (mixed reality) did not significantly differ from those of a group of students taught anatomy via dissection. Moreover, mixed reality was found to be more time-efficient than dissection. Zibis and colleagues compared the performances of 4 groups of students, each of which were taught anatomy via 4 different methods: a 3D digital platform, plastic models, cadaveric dissection, and prosection, respectively. The participants in each of the 4 groups were asked to identify anatomical structures in projected images. The students who received teaching via the 3D digital platform performed significantly better than did those who learned anatomy with the remaining 3 methods.

Thus, although cadaveric dissection has a high educational value, this method should not be considered as definitely superior to digital technologies in terms of knowledge gain. It seems that, due to the COVID-19 pandemic and the shift to remote digital anatomy teaching platforms, a remarkable opportunity arises for enhancement of research concerning these platforms. Continuously evolving 3D digital visualization technologies have shown remarkable potential to enable acquisition of anatomical knowledge. This knowledge could be the basis for high-quality care to future patients.

Funding/Support: None reported.

Lucy C. Chapman
Third-year medical student, University of Warwick Faculty of Medicine, University of Warwick Medical School, Coventry, United Kingdom.

First published online June 8, 2021

References